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Abstract This paper shows a management model for a queuing system operating two shifts and where client 

reneging is present. The model provides the optimal active server policy considering lost clients and cost. Using 

influence diagrams and decision trees, the proposed model implements a Bayesian scheme to update the initial 

knowledge in response to the observed number of lost customers in the first shift. In addition, a utility function 

is used to represent the preferences of the decision-maker and simulation to determine the consequences and 

probabilities of the trees. The results are displayed as the number of active servers recommended for each shift, 

according to the preferences of the decision-maker and the clients lost in the first shift. For the case study, it is 

found that if the weight for the number of lost clients in the utility function (kNL) is less than 0.63, a single 

server should be used in both shifts, while when kNL is greater than said value, the first shift opens one server, 

while a second one is activated for the next shift depending on the number of lost clients in the first shift. 
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1. Introduction 

Queue systems arise in service facilities 

in which customers should wait in line while 

the servers are busy. In systems with reneging, 

customers are only willing to wait for service 

a certain amount of time, after which they 

leave the facility [1]. If, additionally, the 

system operates several shifts, its 

management will require to decide how many 

servers to have active each shift.  

A mathematical model to support the 

management of queuing systems with 

customer reneging and that operates several 

shifts should consider two essential qualities 

of these systems. The first, present in the 

management of queues in general, is the trade-

off between operating costs and customer 

satisfaction. The second one is more subtle 

and specific to these systems, being given by 

the change of information that occurs as the 

number of customers lost in a shift becomes 

known. This information change should be 

quantified and taken advantage of when 

deciding the number of servers to activate in 

subsequent shifts.  
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This manuscript shows the development 

of the mathematical model for managing a 

case study of a queueing system with client 

reneging and operating two shifts. Developed 

from a perspective and with tools of Decision 

Analysis [2], the model includes the 

particularities of the administration of these 

systems: a utility function provides for the 

trade-off between costs and the number of lost 

customers while an influence diagram and its 

corresponding decision tree are used to 

represent the structure of the decisions,  

allowing the Bayesian updating of previous 

knowledge based on the observation of the 

number of customers lost in the first shift. 

 There are several recent reports on the 

use of queuing theory in service systems 

administration. In 2022, Alnowibet et al. [3] 

reported the optimization of the operation of 

the airport at El Cairo, while the paper of 

Shone et al. [4], appearing in 2021, describes 

other applications of said theory to airport 

management; Tarakci et al. [5] address 

hospital management, balancing costs and 

diagnostic quality objectives and Kerbache 

and MacGregor-Smith [6] use networks of 

open finite queues for route optimizing in 
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setting the location and layout of a 

manufacturing facility.  

 

Fewer reports deal with managing 

waiting lines in which customers can leave the 

queue, with Pala and Zhuang [7] and Wang 

and Zhuang [8] applying game theory to 

consider the strategic behavior of terrorists or 

smugglers in the security check points of visa 

offices or airports, aiming to strike a balance 

between the loss of regular customers, 

security and waiting time, while Trigos et al. 

[9] use simulation to consider customer 

reneging in the management of a system of 

complex servers, with the objective of 

improving service quality and reducing costs. 

Queuing theory offers widely known 

formulas for system performance metrics for 

queues in which customer reneging is absent 

and interarrival and service times are 

exponentially distributed [1]. However, this it 

is not the case of systems with customer 

reneging and/or non-exponential times, whose 

complexity makes them the object of the 

current efforts of various research groups. 

Formulas for the performance metrics of 

systems with exponential abandonment times 

are included in Wang and Bin [10] and 

Sasanuma and Scheller-Wolf [11]. Nasrallah 

[12] studies the impact of priority policies on 

performance metrics; Ammar et al. [13] apply 

generating functions to obtain the probability 

density function of the number of customers 

in the queue and Xiong et al. [14] use Volterra 

integrals to analyze queues with deterministic 

reneging times. Finally, Wu and Ke [15], 

Dimou et al. [16] and Economou et al. [17] 

address systems where servers go into idle 

periods, affecting customer reneging behavior 

and Pazgal and Radas [18] describe an 

empirical study to validate predictions about 

the actual behavior of customers deserting the 

queue. 

Decision Analysis (DA), as 

envisioned by its founder R.A. Howard [19] is 

a discipline that aims to help difficult decision 

making, making the most of the available 

information. By following the 

recommendations derived by a DA approach 

to a problem, the stakeholder is guaranteed to 

abide to a set of axioms of rational decision 

making [20]. The reviewed managing models 

of queue systems with customer reneging, 

described in the second paragraph of this 

section, neither take a DA perspective to 

model the problem nor consider the gain of 

information that occurs by observing the 

customers leaving the queue, as done here 

through a Bayesian scheme implemented with 

decision trees and influence diagrams. Finally, 

as formulae for these systems performance 

metrics haven’t been reported in the literature, 

said metrics are determined here using process 

simulation. 

 

2. Methods 

2.1 Case study description 

The case study is shown in Figure 1. 

The facility has a number of servers in 

parallel, which can be either open (having a 

worker assigned to the server) or closed.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1 Case study 

 

Customer reneging behavior is modeled 

by dividing customers into "patient" or 

"impatient" based on how long they are 

willing to wait in line before leaving the 

system. The system operates two shifts, 

between which the number of open servers 

can be adjusted.  

 

2.2 Process simulation 

Discrete event simulation [21] was used 

to determine the probability distribution of the 

number of customers leaving the queue in a 

working shift (NL), conditional on the 

proportion of impatient clients (XI) and the 

number of active servers in the shift (D).  

 

2.3 Decision structure 

An influence diagram, in which 

rectangles indicate decisions and ovals 

uncertainties, represents the decision 

structure. In these diagrams, if an arrow 

reaches a rectangle, it means that the decision 

is made knowing what happened in the figure 
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(node) originating the arrow. On the other 

hand, if an arrow reaches an oval, it indicates 

that the probability distribution of the variable 

in the oval depends on the result of the node 

emanating the arrow [2]. Figure 2 shows the 

decision of the number of servers active for 

the first shift, where brackets indicate 

probability distributions. 

 

 

 

 

 

 

 

 

 

 

 
Fig 2 Diagram for deciding the number of active 

servers in first shift 

 

{XI} is the a-priori (i.e., before the start 

of the first shift) probability distribution of XI. 

The distribution {NL,1|D1, XI}, where NL,1 is 

the number of clients lost in the first shift and 

D1 the number of active servers in this shift, is 

calculated using simulation. At the start of the 

second shift, the number of servers to open 

(D2) is decided after NL,1 becomes known. 

The probability distribution of the 

number of lost customers in the second shift, 

NL,2, depends on D2 and XI. However, NL,1 is 

relevant to XI (i.e., knowing how many 

customers left the queue in the first shift gives 

information about the proportion of them that 

are impatient) so the decision of how many 

servers to activate for the second shift is made 

with more information. This knowledge 

update can be represented by reversing the 

arrow between XI and NL,1 in figure 2 (figure 

3).  

 

 

 

 

 

 

 

 

 
 

Fig 3 Reversal of the arrow between XI and NL,1 in 

figure 2 

 

The distribution of NL,1 conditional on 

D1 is obtained from {NL,1|D1, XI} and {XI} 

through the formula for calculating 

probabilities by conditioning over a partition 

of values of XI, while {XI|D1, NL,1} is derived 

from {NL,1|D1, XI} using Bayes' theorem. The 

influence diagram for the two shifts decision 

is shown in figure 4. This diagram shows that 

the decision of the servers to keep open for the 

second shift (D2) is made after seeing NL,1. The 

diagram is completed with a value node 

(hexagon) with the important consequences 

for the decision, that are the total number of 

lost customers NL,1+ NL,2 and the cost C(D1, 

D2) of the active servers   

 

 

 

 

 

 

 

 

 

 
Fig 4 Influence diagram tor the complete problem 

 

To evaluate the influence diagram, it 

needs to be translated into a decision tree. In 

order to do so, each variable has to be 

discretized into a set of possibilities (e.g., D1 

can take the value of D1
1, D1

2,..., or D1
nd1, with 

nd1 being the number of D1 possibilities). A 

schematic diagram of the tree is shown in 

figure 5, where nd1, nnl1, nd2, nxi, and nnl2 

are the number of possible values of, 

respectively, D1, NL,1, D2, XI,  and NL,2. In these 

trees, uncertainties appear as circles, while 

decisions are represented by squares. The 

lines emanating from a decision represent 

alternatives, while those radiating from 

uncertainties represent its possibilities, with 

the relevant probabilities written below each 

line. At the tips of the tree appear the 

consequences, which consist of the total 

number of lost customers (NL,1+NL,2) and the 

cost C(D1, D2), given by the number of servers 

active in the two shifts. 

The simulation model provides the 

probabilities P(NL,1
i|D1

j, XI
k) and P(NL,2

i|D2
j, 

XI
k). Given the a-priori probability distribution 

P(XI 
k),  probabilities P(NL,1

i|D1
j) are calculated 

as 
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𝑃(𝑁𝐿,1
𝑖 |𝐷1

𝑗
) = ∑ 𝑃(𝑁𝐿,1

𝑖 |𝐷1
𝑗
, 𝑋𝐼

𝑘) × 𝑃(𝑋𝐼
𝑘)𝑘

 (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 5 Decision tree for the number of active servers in both shifts 

 

 

While probabilities P(XI
k|D1

j, NL,1
i) are 

calculated from Bayes´ theorem  
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𝑗
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𝑗
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𝑃(𝑋𝐼

𝑘) (2) 

Where the dependence between XI
k on D1

j, 

is omitted, as, by independence 

P(XI
k|D1

j)=P(XI
k). 

 

 

2.4 Value model 

The consequences, total number of lost 

customers NL,T=NL,1+NL,2 and cost C, are given a 

preference metric through an additive utility 

function [22]. 

 

U(NL,T, C)=kNLUNL(NL,T)+kCUC(C) (3) 

 

The weights kNL and kC add to one. The one-

dimensional utility function UNL takes the values 

of one and zero, respectively, when the number 

of total lost customers is zero and its highest 

possible value for any of the alternatives.  

Correspondingly, the cost utility function, UC, is 

one when using one open server per shift and 

zero for the alternative using the maximum 

number of open servers. When solving a decision 

tree, the consequences at the tree tips are 

replaced by their utilities, and the tree is “folded” 

from right to left. An uncertainty is calculated as 

the expected value of the utilities of the branches 

emanating from it, while the utility of a decision 

is taken as that of the alternative with the highest 

utility that stem from its rectangle. 

3. Results and discussion 

To provide numerical results, the time 

between customer arrivals is assumed to be 

exponentially distributed with mean 10 min, 

while the service times are taken as uniformly 

distributed between 15 and 25 min. The 

maximum waiting time of a patient customer is 

assumed to be uniformly distributed between 30 

and 50 min, while that of an impatient client is 

taken as a uniform variable between 10 and 30 

min. A single shift is taken as 300 minutes long. 

Simulation is used to obtain the probability 

distribution of the number of customers lost in a 

shift (NL) given the proportion of clients that are 

impatient XI and the number of servers active in 

the shift D. For example, if XI=0.333 (that is, one 

third of the clients are impatient) and only one 

server is active (D=1) the probability distribution 

of NL, calculated over 500 replications, is shown 

in figure 6. 

 

 
 
Fig 6 Probability distribution P(NL|D=1, XI=0.333) 
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3.1 A-priori knowledge 

The proportion of impatient clients XI is 

discretized into the values "High" (XI=2/3) and 

"Low" (XI=1/3). The probability of the 

proportion of impatient customers being high is 

denoted P(XI
 H)=P(XI=2/3). The a-priori state of 

knowledge, before starting the first shift, is taken 

as P(XI
 H)=0.5, that is, it is thought that the 

proportion of impatient clients is equally likely 

to be high or low.  

 

3.2 A-posteriori knowledge 

At the end of the first shift, that operated 

with D1 servers active, an observation of NL,1, the 

number of customers lost in that shift, becomes 

available. So the probability that the proportion 

of impatient clients is high changes from 

P(XI
H)=0.5 to P(XI

H|D1,NL,1). These “a-

posteriori” probabilities are shown in figure 7. 

 

 
 

Fig 7 Probability of XI high, conditional on the 

number of active servers and lost customers in 

the first shift  

 

Figure 7 shows how the knowledge of XI 

is changed by the observation of NL,1. For 

example, if the first shift opens a single server 

(D1=1) and no clients are lost in this shift, the 

probability of XI being high drops from 0.5 to 

P(XI 
H|1, 0)=0.22 (indicating an increased belief 

that XI  is low). If one server is active in the first 

shift and 5, 6, or 7 customers desert from the 

queue in this shift, P(XI
H|1, NL,1) takes a value of 

0.57, 0.67 and 0.66 respectively, indicating that 

the confidence of XI being high increases slightly 

from it’s a-priori 0.5 level. 

If the first shift has two servers active 

(D1=2) and no customers are lost, the updated 

probability of XI to be high, P(XI
H|2,0) is 0.41, 

slightly down from its a-priori value of 0.5. 

Under a two active server operation of the first 

shift, if 3 or 4 clients are lost, P(XI
H|2, NL,1) is 

calculated as 0.73 and 0.78 respectively, while if 

5 clients are lost, this gives certainty that the 

proportion of impatient clients is high, 

P(XI
H|2,5)=1.  It is observed that when operating 

the first shift with two active servers instead of 

one, the observation of NL,1 is more informative 

(it produces greater changes in the probability of 

XI with respect to its a-priori value).  

 

3.3 Value parameters 

The utility function UNL(NL,T) on the total 

number of lost customers NL,T was taken as a 

quadratic function through the points UNL(0)=1, 

UNL(7)=0.8 and UNL(14)=0, as the highest value 

of lost customers that can occur in a single shift 

is 7, giving a maximum of 14 for two shifts. This 

shape of UNL(NL,T) penalizes large NL,T values 

over small ones (figure 8). 

 

 

 
 

 
Fig 8 One dimensional utility function for the number 

of customers that left the queue 
  

 

The cost of operation depends on the total 

number of active servers in both shifts, 

DT=D1+D2, so the cost utility function UC(DT) 

equals one when using one active server in both 

shifts, (DT=2), zero when using two active 

servers in both shifts (DT=4) and 0.5 if one shift 

opens a single server and the other opens two 

(DT=3).  

The weights kNL and kC of the overall 

utility function (3) measure the manager’s 

relative preferences for lost customers and 

number of active servers, and are subjective by 

nature, meaning that they depend on the actual 

person making the decision [22]. The values of 

these weights are derived by having the 

stakeholder compare transitions between the 

balanced dimensions (performance metrics). In 

the present context, the transitions between the 

maximum and minimum values of the 

performance metrics are denoted ∆NL,T and ∆DT, 

Customers deserting the queue in the first shift (NL,1) 

 P(XI 
H|D1,NL,1) 

 Probability 

D1=1 

D1=2 

 

NL,T 

UNL (NL,T) 
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characterized as ∆NL,T ="change from 14 to 0 lost 

customers" and ∆DT ="change from 4 to 2 active 

servers". The values of kNL and kC are derived 

from the manager's relative preference between 

∆NL,T and ∆DT. If, for example, the manager 

prefers to have ∆NL,T instead of ∆DT, this means 

that kNL>kC and, were the manager indifferent 

between the two transitions, kNL=kC=0.5.  

 

3.4 Model recommendations 

The model results are shown in figure 9, 

for different values of kNL (kC is the complement 

to 1). Different colors are used to indicate the 

number of servers to activate in the first shift, D1, 

and in the second shift D2.  

 

 

 

 

 kNL value D1 
D2  

NL,1=0 1 2 3 4 5 6 7 

<0.63   

[0.63,0.66]    

[0.66,0.73]    

[0.73,0.77]    

[0.77,0.80]    

[0.80,0.82]    

[0.82,0.87]    

[0.87,0.93]    

>0.93   

 

Fig 9 Recommended number of active servers for 

both shifts 

 

The color of the column "D1" indicates 

how many servers should be active in the first 

shift, while the number of servers to be open in 

the second shift is indicated by the colors of the 

seven columns under the "D2" header, and 

depends on the number of customer that deserted 

the queue in the first shift, NL,1. For example, if 

kNL<0.63, both the first and second shifts will 

operate with a single server active, regardless of 

the value of NL,1. If 0.73<kNL<0.77, only one 

server should be active in the first shift, policy 

that is maintained in the second shift if less than 

four customers are lost in the first shift, 

otherwise a second server should be activated for 

the second shift. Similarly, if 0.80<kNL<0.82, two 

servers are active in the first shift and, if fewer 

than three clients leave the queue in this shift, 

one server closes for the second shift, otherwise 

the two servers are kept active for the second 

shift. 

The results indicate that, the greater the 

value of kNL, the less stringent the conditions for 

which the usage of two servers is recommended. 

As kNL represents the importance of the number 

of lost customers relative to the operation costs, 

if kNL grows, the manager prefers to open more 

servers (incurring more operational cost) in 

order to minimize the number of customers 

leaving the queue. 

       

4. Conclusion 

The discipline of Decision Analysis, as 

introduced by R.A.Howard [23], seeks to 

support difficult decision making, among which 

are situations with uncertainty and multiple 

objectives. This manuscript has shown, through 

the detailed analysis of a specific case study, the 

application of two of its tools for decision 

structuring (influence diagrams and decision 

trees) and one for preference representation 

(utility function) to the problem of the 

administration of the case study of a system of 

queues with customer reneging, operating 

several shifts between which servers can be 

closed or opened.  

The model developed here incorporates, 

through a Bayesian update of previous 

probability distributions, the change of 

information caused as the number of customer 

desertions in the first shift is observed. This is a 

distinct feature that a management model for this 

type of problems should consider, and that isn´t 

covered by previously reported research.  

In the current, highly competitive business 

environment, customers generally have several 

businesses at hand that can provide a service. 

This wide availability means that the customer, 

having initially joined the waiting line of one 

business, can shift to a different supplier if the 

wait time grows excessive. An example of this 

situation occurs in bus terminals or airports, 

where the booths of competing transport 

companies are located next to each other, and 

customers can easily leave one company line to 

join the line of another. The application of the 

methodology illustrated in this article could 

represent a competitive advantage for one of 

such transport companies. 

The implementation of the model 

presented requires knowing how many customer 

desertions have occurred in a shift. This 

information could be observed directly or 

captured by cameras equipped with image 

One active server Two active servers 
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recognition. The model would be solved by 

means of a computer program fed with the 

observed number of desertions, and the 

recommendation would then be transmitted to 

the chief of staff, so to implement the necessary 

changes in the number of active servers.  
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