A FRAMEWORK FOR OBSERVATIONAL DATA-BASED RESPONSE SURFACE METHODOLOGY
Abstract
Keywords
Full Text:
PDFReferences
L. G. de Oliveira, A. P. de Paiva, P. P. Balestrassi, J. R. Ferreira, S. C. da Costa, and P. H. da Silva Campos, Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review, Int. J. Adv. Manuf. Technol., vol. 104, no. 5–8, pp. 1785–1837, 2019
A. G. E. P. Box and K. B. Wilson, On the Experimental Attainment of Optimum Conditions, J. R. Stat. Soc. Ser. B, vol. 13, no. 1, pp. 1–45, 1951.
D. C. Montgomery, Design and Analysis of Experiments, 9th ed. Wiley, 2017.
R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, 2016.
D. Montgomery, Exploring observational data, Qual. Reliab. Eng. Int., vol. 33, no. 8, pp. 1639–1640, 2017.
A. R. Khoei, I. Masters, and D. T. Gethin, Design optimisation of aluminium recycling processes using Taguchi technique, J. Mater. Process. Technol., vol. 127, no. 1, pp. 96–106, 2002.
W. Sukthomya and J. D. T. Tannock, Taguchi experimental design for manufacturing process optimisation using historical data and a neural network process model, Int. J. Qual. Reliab. Manag., vol. 22, no. 5, pp. 485–502, 2005.
S. W. Lee, S. J. Nam, and J. K. Lee, Real-time data acquisition system and HMI for MES, J. Mech. Sci. Technol., vol. 26, no. 8, pp. 2381–2388, 2012.
C. F. Chien, W. C. Wang, and J. C. Cheng, Data mining for yield enhancement in semiconductor manufacturing and an empirical study, Expert Syst. Appl., vol. 33, no. 1, pp. 192–198, 2007.
C. Loy, T. N. Goh, and M. Xie, Retrospective factorial fitting and reverse design of experiments, Total Qual. Manag., vol. 13, no. 5, pp. 589–602, 2002
W. Sukthomya and J. D. T. Tannock, Taguchi experimental design for manufacturing process optimisation using historical data and a neural network process model, Int. J. Qual. Reliab. Manag., vol. 22, no. 5, pp. 485–502, 2005.
C. F. Chien, K. H. Chang, and W. C. Wang, An empirical study of design-of-experiment data mining for yield-loss diagnosis for semiconductor manufacturing, J. Intell. Manuf., vol. 25, no. 5, pp. 961–972, 2014
N. Sadati, R. B. Chinnam, and M. Z. Nezhad, Observational data-driven modeling and optimization of manufacturing processes, Expert Syst. Appl., vol. 93, pp. 456–464, 2018,
B. C. Nookaraju and M. Sohail, Experimental investigation and optimization of process parameters of hybrid wick heat pipe using with RSM historical data design, Mater. Today Proc., no. xxxx, 2020.
M. L. Wang, T. Qu, R. Y. Zhong, Q. Y. Dai, X. W. Zhang, and J. B. He, A radio frequency identification-enabled real-time manufacturing execution system for one-of-a-kind production manufacturing: A case study in mould industry, Int. J. Comput. Integr. Manuf., vol. 25, no. 1, pp. 20–34, 2012.
D. Wu, Y. Wei, and J. Terpenny, Predictive modelling of surface roughness in fused deposition modelling using data fusion, Int. J. Prod. Res., vol. 57, no. 12, pp. 3992–4006, 2019.
H. Liu and H. Motoda, Instance Selection and Construction for Data Mining. Springer Science, 2001.
N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. John Wiley & Sons, 1998.
S. Nagaraju, P. Vasantharaja, N. Chandrasekhar, M. Vasudevan, and T. Jayakumar, Optimization of welding process parameters for 9Cr-1Mo steel using RSM and GA, Mater. Manuf. Process., vol. 31, no. 3, pp. 319–327, 2016.
Y. C. Liu and I. C. Yeh, Using mixture design and neural networks to build stock selection decision support systems, Neural Comput. Appl., vol. 28, no. 3, pp. 521–535, 2017.
S. Vlassides, J. G. Ferrier, and D. E. Block, Using historical data for bioprocess optimization: Modeling wine characteristics using artificial neural networks and archived process information, Biotechnol. Bioeng., vol. 73, no. 1, pp. 55–68, 2001.
H. M. Chi, O. K. Ersoy, H. Moskowitz, and K. Altinkemer, Toward automated intelligent manufacturing systems (AIMS), INFORMS J. Comput., vol. 19, no. 2, pp. 302–312, 2007.
S. J. Shin, J. Woo, S. Rachuri, and P. Meilanitasari, Standard data-based predictive modeling for power consumption in turning machining, Sustain., vol. 10, no. 3, pp. 1–19, 2018.
N. M. Mahmoodi, M. Taghizadeh, and A. Taghizadeh, Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: Preparation and mathematical pollutant removal modeling, J. Mol. Liq., vol. 277, pp. 310–322, 2019.
T. Šibalija, V. Majstorovic, and M. Sokovic, Taguchi-based and intelligent optimisation of a multi-response process using historical data, Stroj. Vestnik/Journal Mech. Eng., vol. 57, no. 4, pp. 357–365, 2011.
M. J. Anderson and P. J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd Ed. Boca Raton, Florida: CRC Press, 2017.
P. Goos and B. Jones, Optimal Design of Experiments. West Sussex: Wiley, 2011.
D. N. Gujarati and D. C. Porter, Basic Econometrics, Fifth Ed. New York: McGraw Hill, 2009.
J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 7th ed. Pearson, 2009.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.